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SOME REGULARITIES OF HETEROGENEOUS
REACTIONS IN LAMINAR FLOWS IN CHANNELS

G. N. Volchkova and S. S. Kharchenko UDC 533.6.011:51+542.971

A gas-mixture flow in a channel on whose walls heterogeneous reactions take place is considered. Numerical
simulation is performed on the basis of equations for a narrow channel. Results of a numerical solution of
the equations are interpolated by a relation involving analytically obtained asymptotic formulas. Some
regularities are obtained for the problem considered.

Gas flows in channels in the presence of chemical reactions are of great practical value for various problems
of chemical engineering. These problems are usually solved numerically, but the results of the calculations, in
contrast to theoretical solutions, do not make it possible to obtain general relations, and each new device requires
an individual series of calculations. To find regularities it is reasonable to attempt to combine numerical and
analytical methods [1], i.e., to use the first in obtaining generalizing material and the second (which usually are
of an asymptotic character) in determining analytical relations by means of which numerical results are
interpolated. The relations thus obtained possess many positive properties of analytical solutions, viz., simplicity,
clear representation and generality, the possibility of employment in theoretical models (they can be integrated
and differentiated), etc. Moreover, they differ only slightly from numerical solutions in accuracy. In what follows
some regularities are obtained on the example of the problem (which is of a great practical interest) of a gas-mixture
flow in a channel on whose walls heterogeneous reactions take place.

We consider a flow of a gas mixture containing the components A, B, the reaction product AB, and
nonreacting components. We assume that an oxidizing reaction may occur on the wall (v44 + vgB = v 45AB); this
is a one-stage process with some effective rate of the heterogeneous reaction W. The effective reaction rate is taken
to mean the total amount of substance reacting per unit time on a unit free surface. In a first-order reaction, for a
"monolithic” catalyst W = KC, and for a porous catalyst [2] W = C(D'KSV)VZ.

We write the formulation of the problem for a gas flow along a cylindrical channel with catalytic walls on
the basis of equations for a narrow channel. Here a laminar mode is considered:
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The condition of conservation of the flow rate is

¥y
2n [ youdy = const . (6)
0
The boundary conditions are:
on the axis of symmetry
o _ 0, v=0; (N
ay

on the wall

0C, /3y =0 for all components except A, B, and AB;

aC;
—a}—‘ =0 for all components, except A, B and AB;
(8)
aC; i
pDi—a_)T = —w; for A, B and the reaction product AB;
where
Wag = —VagMpgW/M; wg=vgMgW/M; w, =v M, W/M, 9
and
T, =const, u,=0. (10)
Here
c
Pr="2, Le,=pDic,/A. (1)

In the initial cross section the pressure, temperature, equal to the wall temperature, velocity profile (uniform
or Poiseuille), and gas-mixture composition are taken to be constant. The mixtures C0O:07:N, (with the
heterogeneous reaction CO + 1/20, = CO3) and H;:0,:N; (Hp + 1/20; = H,0) are considered as examples.
Velocity profiles are assumed to be uniform or to correspond to a steady-state flow. Transport properties for the
gas mixture are calculated by the Mason—Saxena and Wilkey formulas or the Stefan—Maxwell relations.

In a stationary process all substances should be carried by diffusion to the surfaces in amounts
corresponding to stoichiometric equality of the flows. For both concentrations of reactants to vanish simultaneously
on the wall, the condition of diffusive stoichiometry [2] should be fulfilled in a diffusion mode:

Dava _ Dpry _ Dapras

= (12)
Ya Vg VAB
in a motionless medium or in a steady-state mode,
I-m I-m l-m
Dy ya Dy ¥Ypg  Duy van (13)
Va Vi Van

in the initial section of a moving medium. Here m is the exponent in the relation determining mass transfer: Nu
~Re"Pegd . If cquality (13) docs not hold, then the rate of the process is determined by diffusion of the limiting
component {2, for which the combination in expression (13) is the smallest (quantities relating to it will be
denoted by the subscript lim).
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Fig. 1. Change in hydrogen flow rate depending on { for 8 = = and a uniform
initial profile of concentrations: a) the limiting component is hydrogen: 1)
£(02), 2) £(Hy); by the limiting component is oxygen: 1) (07, 2) LE(Hy); ©
Le = 1.

Note that if thc component with the smaller coefficient of diffusion is limiting, then it will remain such for
the entire duration; if the component with the larger coefficient of diffusion is limiting, then at a certain ratio of
concentrations and coefficients of diffusion a new limiting component is possible. Thus, on an absolutely catalytic
wall (a diffusion mode) the concentration of the reactant I (4 or B) for which the combination in expression (12)
will have the smaller value will vanish and the boundary conditions on the wall will take the form

and for the concentrations of the other components taking part in the reaction the condition of equality of the
corresponding molar flows is laid down:

vili = v (15)

We emphasize that conditions (14) and (15) are used only in the case of a diffusion mode (an absolutely
catalytic wall).

The problem formulated was solved numerically.

DRe is the length scale for the equations used. In this situation it is natural to assume that the mass transfer
characteristics can have a universal form when using { = x/ DPe);, as the coordinate, where Pejim = UmeanD” Diim-

We introduce a dimensionless flow rate of the component participating in the reaction:

G, (©) = (G, §) -~ Gi)/(G,; (0) = Gy , (16)

where Gy is the flow rate of the component in an equilibrium mixture. If there is a deficit of the component in the
initial mixture, then the expression takes a simpler form:

G (§) = G, (5)/G, (0). (17

The above considerations arc confirmed by calculations conducted for both the components with close
diffusion properties (Leco ~0.9, Leco, ~0.7, Leg, ~0.8, in the initial cross section a Poiscuille velocity profile is
assigned with wgmean = 0.5 m/sec, D = 2.5 mm, p = 100,000 Pa, T = 600 K, the initial mass composition N,:C0:0;
= 95:3:2, uniform concentration profiles) and for the case of components with strongly differing diffusion properties
(Lc”2 ~3.2, Lcnz() ~ 1.1, Leg, ~0.9, in the initial cross scction a Poiscuille velocity profile is assumed with upean
=0.S m/sec, D=2.5 mm, p=100,000 Pa; 7= 600 K, the inital molar composition N3:H,:042 = 1:8:91 and N3:H:04
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= 43.9:41.9:14.2, uniform concentration profiles, Fig. 1). Calculations were conducted in the diffusion mode with
the boundary conditions (14), (15). In the first case the product of the reaction CO; with the smallest coefficient
of diffusion turned out to be the limiting component, and just this product should be used to calculate the self-similar
coordinate. Figure | presents results for the case where the initial mixture has a stoichiometric excess of the
component studied. (A mixture with the mass composition N7:H7:02 = 47.5:41:11.5, in which only 3% of the molar
content of hydrogen can take part in the reaction, was considered as an example). Note that the hydrogen
concentration on the wall has a value corresponding to a fully reacted mixture.

Thus, in processing the results an effective coefficient of diffusion of the limiting component should be used
1o calculate the Peclet number. In this case the results are closest to the self-similar curve corresponding to Le; =
1. Calculations by the algorithm of [3] using the Wilkey formula and the Stefan—Maxwell relations for the
coefficients of diffusion gave the same results with accuracy to the third decimal place for components with strongly
differing properties (the molar content of hydrogen in the initial cross section varied from 1 to 14%).

Note that the steady-state velocity profile, in spite of the presence of chemical reactions and nonuniformity
of concentration profiles, hardly differs from a Poiseuille parabola.

To consider these problems analytically a simplified formulation of the problem is usually employed, i.e.,
the velocity profile is regarded as parabolic and only one diffusion equation is written. The problem in such a
formulation is solved, in principle, by the method of separation of variables; however, the result turns out to be
very cumbersome, and a numerical method is used to find eigenvalues. Another way to solve this problem
approximately is to use the Taylor modei [4]. But it is shown in [5] that this model gives results that are less
accurate the higher the rate of the chemical reactions, and for a diffusion mode the Taylor model is completely
unsuitable. In [5] an approximate method is suggested that is appropriate for any rate of the chemical reactions.
This is confirmed by comparison with numerical solutions. This method presupposes a Poiseuille velocity profile,
a steady-state concentration profile, and first order of the reaction in concentration.

We write the system of equations [5] for the case under consideration for Pe = =, absence of a volumetric
reaction, and the presence of a first-order heterogeneous reaction on the wall

1 dfn Kn dfn+l dfn+2
7 TIC“+ (1 "'T) dC ’_Kn dC —2’1 (fl~ 1)fn_2—
K, (n+1
~4n2(1+—"—(;—r—2)+41(n(n+1)2fn, n=01,..,N-1; (18)
m— 1 K (m+1) (m + 1)
Smea = |V T Syt Koy 5 =0, m=N, N+1. (19)
2m 2m m

Here N is the number of the approximation;
Ky=-2(@4n+p)/(4+4n+p), B=wR/(CDyy,):; (20)

!
C is the dimensionless concentration; ¢ is the dimensionless coordinate; fn=2f Ci(1/2 — }2)"}(1}.
0
Note that the case where 8 = » and fg is the mean concentration of componcent [ reacting on the wall over
the tube cross section corresponds to a diffusion mode. In what follows, analytical solutions that depend on
coefficients A(B), B(B) that result from the solution of (18)-(20) are given.
In the first approximation

fo=cxp(— AP . 21

where A(e) = 0 for a diffusion mode; in the sccond approximation
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Fig. 2. Change in the relative flow rate of a reacting component depending on
{ (steady-state concentration profiles in the initial cross section): 1, 2) first
and second approximations of the analytical method; 3) numerical solution,
Le=1.

fo=0.9868 exp (— A (B) ) + 0.0132exp (- BB L),
A(®) =157, B(w)=1126. (22)

A comparison of analytical and numerical solutions for § = « (for the numerical solution the cross section
for which constant dimensionless concentration profiles C = C(¥)/C (y = 0) are established is taken as the initial
cross section) shows (Fig. 2) that in the second approximation the method of [§] gives satisfactory results and,
consequently, it can be used sucessfully to calculate flows with chemical reactions on the wall in a section of a flow
that is stationary in concentration profiles. In the case of a finite value of § for a first-order reaction the solution
of (18)-(20) for B > 100 agrees with the asymptotic one corresponding to 8 = « with an accuracy to 1%.

In practice, at the channel inlet there usually is a uniform velocity and concentration profile, and therefore,
to obtain results suitable for use at the start of the channel one should take into account the effect of the initial
flow section. The initial section is associated with growth of the boundary layer and transition to self-similar
profiles.

We consider the processes at the start of the channel on the basis of boundary-layer theory, neglecting the
longitudinal pressure gradient and considering the plane case (this obviously holds if the boundary layer thickness
is much smaller than the tube radius). In the case where there are no volumetric reactions and Le; = 1, it is obvious
that there is a linear dependence between the velocity and concentration profiles.

Then, using the known solution for a plate by analogy with friction stress, we obtain the flow rate of the
i-th component in the initial section

G ~1—-a (23)

L]

and the change in its flow rate in the main section, as was shown above, has an exponential character
G, ~exp (— bx) . (29)
To describe completely the change in the flow rate along the entire tube length by computational data, we
sclect an interpolation formula that describes asymptotically correctly the regularitics at { = « and { = 0. The

dependences of the coefficicnts A(B) for the first and second approximations, nondimensionalized by the value
obtained at f = o, arc retained with good accuracy in going from the first approximation to the second, thus making
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Fig. 3. Change in the relative flow rate of a reacting component depending on
¢ in the case of uniform initial profiles of concentrations for various values of
B D o, 2) 423, 3) 2.12, 4 1.7, 5 0.42; points, numerical solution; solid
curves (in the inset), formula (25); dashed curves, formula (26).

it possible to use the form of the dependence obtained in the first approximation to approximate the numerical
solution by means of the corresponding scale multiplier. In the first approximation

AL () = — 4Ky/ (0.5 + (1 — Ky/2) Ay — KpAp) ,
A= (1+K)/(4Ky), Ay = (4 + 3Ky (1 + K})/(4Ky) — 1)/(9K3) ,

where the coefficients K, are determined by relation (20). Then

AB) =A(®)3B), @ =4 B)/a (=).

Having approximated the data resulting from the calculations and joined together the solutions (23), (24) by means
of the transition frunction ¢ () so as to satisfy both regularities, we obtain the following form of —C—?i@):

G =exp{l=AB) + 479 B p ©1L' ¥ _ 0195 (1 —p ¢)) 6 B}, (29)
where p (&) = (1 + 32?,‘)_5. For long tubes with { tending to infinity (25) passes over to
G, (&) =exp (- AB)§ - 0.195 (8)), (26)

where A(e) = 7.28, 8(=) = | for a diffusion mode. Here we note that formula (26) describes well the flow along
the entire section except for a small initial section. The convergence of (25) to (26) is presented in Fig. 3a. We
c¢mphasize that the relations obtained hold for a diffusion mode, whereas in a kinetic mode they hold only for the
first order for the reaction.

The results of numerical and analytical calculations for a finite rate for the reaction (8 # =) are also in
satisfactory agreement.

Results of a numerical calculation for a flow for different 8 and a uniform initial concentration profile and
results by (25) are given in Fig. 3 and are in good agreement. Note that in a kinctic mode with a reaction order
different from unity the results should depend on the initial concentration.

The formulation of the problem of mass transfer for one of the components for Cy, = 0 coincides with the
well-known problem of heat transfer in a tube with a constant wall temperature, which is solved by the method of
separation of variables. The solution is obtained in the form of an infinite series |6 ]; here, starting with some value
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of the reduced length, the profiles of dimensionless temperature become self-similar, and all terms of the series,
except the first, can be neglected. The solution takes the form

%)—_—%: T,(7)exp (- 252-?515 %) , el = 2Nu,,
where Nu,, is the critical Nusselt number (of the seif-similar mode), Nug = auD/4 = 3.66.

We introduce the diffusion Nusselt number Nuyg = ayD/ Dy, ag = jq/ 1Cy, — Col. It follows from the
solution obtained that Nuy = A(8)/2. Note that for a steady-state section the resulting Nusselt number is equal to
3.64, which differs only slightly from the value given above that was obtained from an analytical solution. The
divergence that occurs is probably related to rounding-off errors in discarding terms of the series and errors in the
numerical solution and the approximation.

On the basis of the regularities obtained we write a formula for determining the length of the catalytic
channel that is needed to burn up the investigated component in the case where the initial section is smalil relative
to the total channel length. We transform (26) to the form

C;(x) = C;(0) exp (- A (B) ¢ — 0.1955 (B)),

here C; is the mean-flow-rate concentration of the i-th component.
We consider not only a single channel but also a block of channels. We rewrite the coordinate as { =
x/ x,, where the characteristic length x, can be represented in the form

x, = DPeyy = (4RGT )/ (tMpDyyy) = (4RGT)/ (xMpDy N) ,

here G is the total flow rate through all channels of the block, N is the number of channels. Prescribing the required
concentration C(x) after passing the catalytic channel, we obtain

x=—x, (0.1955 () + In (C (x)/C (0)))/A (B) ,

whence it follows that the channel length is minimum in a diffusion mode for which the following conclusions hold:

— with maintenance of the mass flow rate and the wall temperature the necessary length of the block is
independent of the working mixture pressure (since Dy, ~1/p);

~ with maintenance of the mass flow rate through a single tube and the wall temperature the necessary
length is independent of the tube diameter;

— with maintenance of the mass flow rate through a block the necessary length of the catalytic block varries
in inverse proportion to the number of channels;

— with a fixed number of channels the block length is proportional to the square of the diameter of the
channels.

On the basis of the regularity obtained we consider the problem of the power efficiency of catalytic-reactor

operation. The power of surface forces applied to gas in a tube is N, = ApuS, where S is the tube cross-sectional
area.

We introduce the quantity £ = (G — G;)/Np characterizing the power cfficiency of catalytic-reactor
operation. Then, using the above expressions for N, G;, and the mass flow ratc per second for Poiseuille flow, we
obtain

E=Cu(l —cxp (= A@B)E - 0195 (8))/ (32l & Pr).

Note that the function (I — exp (—=A(B) — 0.1956(8)))/¢ is a monotonically decrcasing function of ¢, i.c., the
cfficiency of the channel decreases with its length.
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By analogy with heat transfer and mass transfer, to reduce weight and size characteristics and to improve
power characteristics the same measures can be employed as for enhancement of heat transfer. However, one should
bear in mind that by virtue of the usual analogy between heat transfer and friction this will result in pressure losses.

We emphasize that the obtained results refer to the case of stationary processes under certain thermal
conditions (T = const) with a negligible effect from gravity forces.

In general the results of the work indicate the possibility of generalizing the laws governing laminar flows
of various gas mixtures in tubes with heterogeneous reactions at least under the conditions considered (first order
for the reaction, constant wall temperature).

The authors thank A. I. Moshinskii for valuable discussions and M. Kh. Strelets for constructive criticism.

NOTATION

x, y, cylindrical coordinates; u, v, velocity components; ugean, mean velocity over a cross section; C;, mass
concentration of the i-th component; C,, heat capacity of the mixture; D', coefficient of diffusion in a porous
material; D;, coefficient of diffusion; D, channel diameter; G;(§), flow rate of the i-th component; Gy, flow rate after
completion of the reaction; A, enthalpy of the mixture; K, rate constant of the heterogeneous reaction; M, molecular
weight; p, pressure; Pe, Peclet number; §,, specific surface of the porous catalyst; T, temperature; W, rate of the

heterogeneous reaction; y, molar concentration; 4, dynamic viscosity; v, stoichiometric coefficient; p, density; { =
x/(DPelim).
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