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A gas-mixture f low in a channel on whose walls heterogeneous reactions take place is considered. Numerical 

simulation is performed on the basis of equations for a narrow channel. Results of  a numerical solution of 

the equations are interpolated by a relation involving analytically obtained asymptotic formulas.  Some 

regularities are obtained for  the problem considered. 

Gas flows in channels in the presence of chemical reactions are of great practical value for various problems 

of chemical engineering. These problems are usually solved numerically, but the results of the calculations, in 

contrast to theoretical solutions, do not make it possible to obtain general relations, and each new device requires 

an individual series of calculations. To find regularities it is reasonable to attempt to combine numerical and 

analytical methods [1 ], i.e., to use the first in obtaining generalizing material and the second (which usually are 

of an asymptotic character) in determining analytical relations by means of which numerical results are 

interpolated. The relations thus obtained possess many positive properties of analytical solutions, viz., simplicity, 

clear representation and generality, the possibility of employment in theoretical models (they can be integrated 

and differentiated), etc. Moreover, they differ only slightly from numerical solutions in accuracy. In what follows 

some regularities are obtained on the example of the problem (which is of a great practical interest) of a gas-mixture 

flow in a channel on whose walls heterogeneous reactions take place. 

We consider a flow of a gas mixture containing the components A, B, the reaction product AB, and 

nonreacting components. We assume that an oxidizing reaction may occur on the wall (VAA + VBB = VABAB);  this 

is a one-stage process with some effective rate of the heterogeneous reaction W. The effective reaction rate is taken 

to mean the total amount of substance reacting per unit time on a unit free surface. In a first-order reaction, for a 

"monolithic" catalyst W = KC, and for a porous catalyst 12] W = C(D'KSv) ~ .  

We write the formulation of the problem for a gas flow along a cylindrical channel with catalytic walls on 

the basis of equations for a narrow channel. Here a laminar mode is considered: 

Opuy + Opvy= O, (1) 
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The condi t ion of conservat ion of the flow rate  is 

Y 
2~ f ypudy = cons t .  (6) 

0 

The bounda ry  condi t ions are: 

on the axis of s y m m e t r y  

where 

and 

Here 

on the wall 

Of 0 v = 0" (7) 
Oy 

OC 1/Oy = 0 for all components  except A, B, and  AB; 

OC i 
Oy 

- 0  for all components ,  except A, B and A B ;  

OC i 
pDi Oy - wi for A, B and the react ion product  A B ;  

(8) 

WAB = -- V A B M A B W / M  ; t~ = V B M B W / M  ; coA = V A M A W / M  , (9) 

T w = cons t ,  u w = 0 .  (10) 

Pr = f f ~ ,  Le i = PDiCp/)t. (1 I) 

In the initial  cross section the pressure ,  t empera ture ,  equal to the wall tempera ture ,  velocity profile (uniform 

or P o i s e u i l l e ) ,  a n d  g a s - m i x t u r e  compos i t i on  a r e  taken  to be cons tan t .  The  mix tu re s  C O : O 2 : N  2 (wi th  the  

heterogeneous react ion CO + 1 /202  = CO2) and  H2:O2:N2 (H2 + 1 /202  = H20)  are  cons idered  as examples .  

Velocity profiles are  assumed to be uniform or to correspond to a s t eady- s t a t e  flow. Transpor t  proper t ies  for the 

gas mixture  are  calculated by the M a s o n - S a x e n a  and Wilkey formulas  or  the S t e f a n - M a x w e l l  relat ions.  

In a s t a t i o n a r y  process  all  s u b s t a n c e s  shou ld  be c a r r i e d  by  d i f fus ion  to the su r f aces  in a m o u n t s  

corresponding to s toichiometr ic  equali ty of the flows. For both concentra t ions  of reactants  to vanish s imul taneous ly  

on the wall,  the condit ion of diffusive s to ichiometry  121 should be fulfilled in a diffusion mode: 

DAYA DBYB D.4BYAB 

v A v B VAB 
(12) 

in a motionless medium or in a s t eady- s t a t e  mode,  

1 - m  I - r n  I - m  
DA YA _ DB YB _ DAB YAB (13)  

v A vii VAB 

in the initial section of a moving medium. Here m is the exponent  in the relation de te rmin ing  mass t ransfer:  Nu 

RenPe~ ~ . If equali ty (13) does not hold, then the rate of the process is de te rmined  by diffusion of lhc l imiting 

component [2],  for which the combinat ion in expression (13) is the smallest  (quanti t ies  relat ing to it will be 

denoted by the subscript  Jim). 
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Fig. 1. Change  in hydrogen  flow rate  depending  on ~ for f l  = ~o and  a uniform 

initial profile of concentrat ions:  a) the limiting component  is hydrogen :  l)  

~(O2), 2) ~(H2); b) the l imiting component  is oxygen:  1) ~(02) ,  2) ~(H2); c) 

L e = l .  

Note that if thc component  with the smal ler  coefficient of diffusion is l imiting, then it will remain  such for 

the ent ire  durat ion;  if the component  with the larger  coefficient of diffusion is l imiting,  then at  a cer ta in  rat io of 

concentrat ions  and  coefficients of diffusion a new limiting component  is possible. Thus ,  on an absolute ly  catalyt ic  

wall (a diffusion mode) the concentrat ion of the reactant  I (A or B) for which the combina t ion  in express ion  (12) 

will have the smal ler  value will vanish and the boundary  condit ions on the wall will take the form 

X 1 : 0 ,  (14) 

and for the concentra t ions  of the other  components  taking part in the reaction the condi t ion of equal i ty  of the 

corresponding molar  flows is laid down: 

vi :i = vd~" (15) 

We emphasize  that condit ions (14) and (15) are  used only in the case of a diffusion mode (an absolute ly  

catalyt ic  wall). 

The  problem formulated was solved numerical ly.  

DRe is the length scale for the equations used. In this si tuation it is natural  to a ssume that  the mass t ransfer  

character is t ics  can have a universal form when using ~ = x /DPe l im  as the coordinate ,  where  Pelim = UmeanD/Dlim �9 

We introduce a d imensionless  flow rate  of the component  part ic ipat ing in the reaction:  

Gi (~) = (G~ (~) - GiO/  (Gi (0) - Gif ) , (16) 

where Gif is the flow rate of the component  in an equil ibrium mixture.  If there is a deficit  of the component  in the 

initial mixture,  then the expression takes a s impler  form: 

Gi(~)  Gi(~)  G~(O) (17) 

The above considera t ions  are  confirmed by calculations conducted for both the components  with close 

diffusion propert ies  (Lect) - 0 . 9 ,  Leco  2 - 0 . 7 ,  Leo2 - 0 . 8 ,  in the initial cross section a Poiseuil le  velocity profile is 

ass igned with Umean = 0.5 m/see ,  D = 2.5 mm, p = 100,000 Pa, T = 600 K, the initial mass  composit ion N 2 : C O : O  2 

= 95:3:2, uniform concentrat ion profiles) and for the case of components  with s t rongly differ ing diffusion propert ies  

(l.etl 2 - 3 . 2 ,  LelI2O - 1.1, [.co2 - 0 . 9 ,  in the initial cross section a Poiseuille velocity profile is assumed with Umean 

= 0.5 m/sec ,  D = 2.5 mm, p = 100,000 Pa; T = 600 K, the initial molar composition N2:H2:O2 = 1:8:91 and N2:H2:O 2 
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= 43.9:41.9:14.2, uniform concentration profiles, Fig. 1). Calculations were conducted in the diffusion mode with 

the boundary  conditions (14), (IS). In the first case the product of the reaction CO2 with the smallest coefficient 

of diffusion turned out to be the limiting component,  and just this product should be used to calculate the self-similar 

coordinate. Figure 1 presents results for the case where the initial mixture has a stoichiometric excess of the 

component studied. (A mixture with the mass composition N2:H2:O2 = 47.5:41:11.5, in which only 3% of the molar 

content of hydrogen  can take part in the reaction, was considered as an example).  Note that the hydrogen 

concentration on the wall has a value corresponding to a fully reacted mixture. 

Thus,  in processing the results an effective coefficient of diffusion of the limiting component should be used 

to calculate the Peclet number. In this case the results are closest to the self-similar curve corresponding to Le i = 

1. Calculations by the algorithm of [3] using the Wilkey formula and the S te fan-Maxwel l  relations for the 

coefficients of diffusion gave the same results with accuracy to the third decimal place for components with strongly 

differing properties (the molar content of hydrogen in the initial cross section varied from 1 to 14yo). 

Note that the s teady-state  velocity profile, in spite of the presence of chemical reactions and nonuniformity 

of concentration profiles, hardly differs from a Poiseuille parabola. 

To consider these problems analytically a simplified formulation of the problem is usually employed, i.e., 

the velocity profile is regarded as parabolic and only one diffusion equation is written. The problem in such a 

formulation is solved, in principle, by the method of separation of variables; however, the result turns out to be 

very cumbersome,  and a numerical  method is used to find eigenvalues. Another  way to solve this problem 

approximately is to use the Taylor  model [4 ]. But it is shown in [5 ] that this model gives results that are less 

accurate the higher the rate of the chemical reactions, and for a diffusion mode the Taylor  model is completely 

unsuitable. In [5] an approximate method is suggested that is appropriate for any rate of the chemical reactions. 

This is confirmed by comparison with numerical solutions. This method presupposes a Poiseuille velocity profile, 

a s teady-state  concentration profile, and first order  of the reaction in concentration. 

We write the system of equations [S ] for the case under  consideration for Pe = oo, absence of a volumetric 

reaction, and the presence of a first-order heterogeneous reaction on the wall 

--d-~+ 1 - d---~ - K n  dE - 2 n ( n -  1)/~_ 2 -  

(K~(~+,)) 1)2f~ - 4n 2 1 + 2n + 4Kn(n  + , n = 0 ,  1 . . . . .  N -  1 ; (18) 

- ( Krn (rn + 1)3 (m + 1) 2 
m 1 fro-2 1 + fm- I  + Krn+l ~ f r n  0 ,  m N ,  N + 1 . (19) 

2m 2m m 

Here N is the number  of the approximation; 

K n = - 2 ( 4 n  + `8 ) / (4  + 4n + , 8 ) ,  `8 = coR/(CDlim); (20) 
1 

C is the dimensionless concentration; ~ is the dimensionless coordinate; fn = 2 f  C i ( l / 2  - .~2)~d~. 
o 

Note that the case where/~ = oo and f0 is the mean concentration of component t reacting on the wall over 

the tube cross section corresponds to a diffusion mode. In what follows, analytical solutions that depend on 

coefficients A(/:r B(fl) that result from the solution of (18)-(20) are given. 

In the first approximation 

f0 = e x p ( -  A (/5r ~) , (21) 

where A~oo) = q for a diffusion mode; in the second approximation 
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Fig. 2. Change  in the relative flow rate of a reacting component depending on 

(steady-state concentration profiles in the initial cross section): 1, 2) first 

and second approximations of the analytical method; 3) numerical solution, 

L e = l .  

.to = 0.9868 exp ( -  A (~) ~) + 0.0132 exp ( -  B ~ )  ~) ,  

A (o0) = 7.57,  B (~)  = 112.6. (22) 

A comparison of analytical and numerical solutions for,8 ~, w (for the numerical solution the cross section 

for which constant dimensionless concentration profiles C -- C ( y ) / C  (y = 0) are established is taken as the initial 

cross section) shows (Fig. 2) that in the second approximation the method of [5] gives satisfactory results and, 

consequently, it can be used sucessfully to calculate flows with chemical reactions on the wall in a section of a flow 

that is s tat ionary in concentration profiles. In the case of a finite value of,8 for a first-order reaction the solution 

of (18)-(20) for,8 > 100 agrees with the asymptotic one corresponding to ,8 = ~ with an accuracy to 1%. 

In practice, at the channel inlet there usually is a uniform velocity and concentration profile, and therefore, 

to obtain results suitable for use at the start of the channel one should take into account the effect of the initial 

flow section. The initial section is associated with growth of the boundary layer and transition to self-similar 

profiles. 

We consider the processes at the start of the channel on the basis of boundary- layer  theory,  neglecting the 

longitudinal pressure gradient and considering the plane case (this obviously holds if the boundary  layer  thickness 

is much smaller than the tube radius). In the case where there are no volumetric reactions and Le i = 1, it is obvious 

that there is a linear dependence between the velocity and concentration profiles. 

Then,  using the known solution for a plate by analogy with friction stress, we obtain the flow rate of the 

t-th component in the initial section 

05 (23) 
G i ~ 1 - a x  , 

and the change in its flow rate in the main section, as was shown above, has an exponential character  

G i - e x p  ( -  b x ) .  (24) 

To describe completely the change in the flow rate along the entire tube length by computational data, we 

select an interpolation formula that describes asymptotically correctly the regularities at ~ = ~ and ~ = 0. The 

dependences of the coefficients A(fl) for the first and second approximations, nondimensionalized by the value 

obtained at/~ = r162 arc retained with good accuracy in going from lhe first approximation to the second, thus making 
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Fig. 3. Change  in the relative flow rate of a reacting component  depending on 

in the case of uniform initial profiles of concentrat ions for various values of 

r :  1) o0, 2) 4.23, 3) 2.12, 4) 1.7, 5) 0.42; points, numerical solution; solid 

curves (in the inset), formula (25); dashed curves, formula (26). 

it possible to use the form of the dependence obtained in the first approximation to approximate the numerical 

solution by means of the corresponding scale multiplier. In the first approximation 

A 1 (/3) = - 4 K 0 / ( 0 . 5  + (1 - K 0 / 2  ) A 1 - KoA2), 

A 1 = (1 + K I ) / ( 4 K 2 ) ,  A 2 = ((4 + 3K2) (1 + K 1 ) / ( 4 K 2 )  - 1) / (9K3) ,  

where the coefficients K n are determined by relation (20). Then 

A (fl) = A (o0) 6 ([3),  6 (fl) = A 1 (fl) / A 1 ( ~ ) . 

Having approximated the data resulting from the calculations and joined together the solutions (23), (24) by means 

of the transition frunction ~(~) so as to satisfy both regularities, we obtain the following form of Gi(~): 

Gi (~) = exp { [ -  A (fl) + 4.796 (/3) ~, (~)]~(l-O.S~o(r _ 0.195 (1 - ,p (~)) 6 (/3)}, (25) 

where ~o(~) = (1 + 32~) -5. For long tubes with ~ tending to infinity (25) passes over to 

GI (~) = exp ( -  a (fl) ~ - 0.1956 (fl)), (26) 

where A(o0) = 7.28, 6(o0) = 1 for a diffusion mode. Here we note that formula (26) describes well the flow along 

the entire section except for a small initial section. The convergence of (25) to (26) is presented in Fig. 3a. We 

emphasize that the relations obtained hold for a diffusion mode, whereas in a kinetic mode they hold only for the 

first order  for the reaction. 

The results of numerical and analytical calculations for a finite rate for the reaction q3 ~ ~)  are also in 

satisfactory agreement.  

Results of a numerical calculation for a flow for different fl and a uniform initial concentration profile and 

results by (25) are given in Fig. 3 and are in good agreement. Note that in a kinetic mode with a reaction order  

different from unity the results should depend on the initial concentration. 

The formulation of the problem of mass transfer for one of the components for Cw = 0 coincides with the 

well-known problem of heat transfer in a tube with a constant wall temperature, which is solved by the method of 

separation of variables. The solulion is obtained in the form of an infinite series 16 l; here, starting with some value 
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of the reduced  length,  the profiles of d imens ionless  t empera tu re  become self-s imilar ,  and  all terms of the series, 

except the first,  can be neglected.  The  solution takes the form 

T 0 _  T w -  T . ( 7 ) e x p  - 2eX~e  , e = 2 N u |  

where Nu| is the crit ical Nussel t  number  (of the se l f -s imilar  mode) ,  Nu| = a |  = 3.66. 

We in t roduce  the diffusion Nussel t  number  NUd = adD/Dlim, a d - - j d / I C w -  C01. It follows from the 

solution ob ta ined  that Nuo = A(f l ) /2 .  Note that for a s t eady-s t a t e  section the resul t ing Nussel t  number  is equal to 

3.64, which differs only sl ightly from the value given above that was obta ined from an analyt ica l  solution. The 

divergence that  occurs is probably  re la ted to rounding-off  errors  in d iscard ing  terms of the series and  errors  in the 

numerical  solution and the approximat ion.  

On the basis of the regular i t ies  ob ta ined  we write a formula for de te rmin ing  the length of the catalytic 

channel  that  is needed  to burn up the invest igated component  in the case where the initial  section is small  relative 

to the total channel  length. We t ransform (26) to the form 

C i (x) = C i (0) exp ( -  A (,fl) ~ - 0.195{3 (fl)) ,  

here Ci is the mean- f low-ra te  concentra t ion of the i- th component .  

We consider  not only a single channel  but also a block of cl',annels. We rewrite the coord ina te  as ~ = 

x / x . ,  where the character is t ic  length x.  can be represented  in the form 

x.  = DPeti m = ( 4RGT) / (~MpDl im)  = (4RGsT)/(~cMpDlimN) , 

here Gs is the total flow rate through all channels  of the block, N is the number  of channels .  Prescr ib ing  the required 

concentra t ion C(x) after  passing the catalyt ic  channel ,  we obtain 

x = - x.  (0.1955 (/5) + In (C ( x ) / C  (O))) /A (fl), 

whence it follows that the channel  length is minimum in a diffusion mode for which the following conclusions hold: 

- with maintenance  of the mass flow rate  and  the wall t empera ture  the necessary  length of the block is 

independen t  of the working mixture  pressure  (since Dli m - 1 /p ) ;  

- with main tenance  of the mass flow rate through a single tube and the wall t empera tu re  the necessary  

length is independen t  of the tube d iameter ;  

- with maintenance  of the mass flow rate  through a block the necessary  length of the catalyt ic  block varries 

in inverse proport ion to the number  of channels;  

- with a fixed number  of channels  the block length is proport ional  to the square of the d i ame te r  of the 

channels .  

On the basis of the regular i ty  obta ined  we consider  the problem of the power efficiency of ca ta ly t ic - reac tor  

operat ion.  The  power of surface forces appl ied to gas in a tube is Np = ApuS, where S is the tube cross-sect ional  

area.  

We in t roduce  the quant i ty  E = (GIo - GI ) /Np  charac ter iz ing  the power efficiency of ca ta ly t i c - reac tor  

operat ion.  Then,  using the above expressions  for Np, Gi, and the mass flow rate per second for Poiseuil le flow, we 

obtain 

E = CI0 (1 - exp ( -  A (~) ~ - 0.195,3 {fl)))/{32U2mcan ~ P r ) .  

Note that the function (1 - exp ( -A(f l )~  - 0.1955(fl))) /~ is a monotonical ly decreas ing function of .~, i.e., the 

efficiency of the channel  decreases  with its length. 
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By analogy with heat transfer and mass transfer, to reduce weight and size characteristics and to improve 

power characteristics the same measures can be employed as for enhancement of heat transfer. However, one should 

bear in mind that by virtue of the usual analogy between heat transfer and friction this will result in pressure losses. 

We emphasize that the obtained results refer to the case of stationary processes under certain thermal 

conditions (Tw = const) with a negligible effect from gravity forces. 

In general the results of the work indicate the possibility of generalizing the laws governing laminar flows 

of various gas mixtures in tubes with heterogeneous reactions at least under the conditions considered (first order 

for the reaction, constant wall temperature). 

The authors thank A. I. Moshinskii for valuable discussions and M. Kh. Strelets for constructive criticism. 

N O T A T I O N  

x, y, cylindrical coordinates; u, v, velocity components; Umean, mean velocity over a cross section; Ci, mass 

concentration of the i-th component; Cp, heat capacity of the mixture; D', coefficient of diffusion in a porous 

material; D i, coefficient of diffusion; D, channel diameter; Gi(~), flow rate of the i-th component; Gr, flow rate after 

completion of the reaction; h, enthalpy of the mixture; K, rate constant of the heterogeneous reaction; M, molecular 

weight; p, pressure; Pe, Peclet number; Sv, specific surface of the porous catalyst; T, temperature; W, rate of the 

heterogeneous reaction; 7, molar concentration; ~, dynamic viscosity; v, stoichiometric coefficient; p, density; ~ - 

x /  ( DPelim). 
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